MOF-Derived Cu@Cu2O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction
نویسندگان
چکیده
منابع مشابه
MOF-Derived Cu@Cu2O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction
Research on the synthesis of nanomaterials using metal-organic frameworks (MOFs), which are characterized by multi-functionality and porosity, as precursors have been accomplished through various synthetic approaches. In this study, copper and copper oxide nanoparticles were fabricated within 30 min by a simple and rapid method involving the reduction of a copper(II)-containing MOF with sodium ...
متن کاملRecent Progress on MOF‐Derived Heteroatom‐Doped Carbon‐Based Electrocatalysts for Oxygen Reduction Reaction
The oxygen reduction reaction (ORR) is the core reaction of numerous sustainable energy-conversion technologies such as fuel cells and metal-air batteries. It is crucial to develop a cost-effective, highly active, and durable electrocatalysts for ORR to overcome the sluggish kinetics of four electrons pathway. In recent years, the carbon-based electrocatalysts derived from metal-organic framewo...
متن کاملSingle walled carbon nanotube in the reaction layer of gas diffusion electrode for oxygen reduction reaction
In this paper, the effect of surface area of reaction layers in gas diffusion electrodes on oxygen reduction reaction was investigated. For this purpose, various amounts (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5 and zero %wt of total loading of reaction layer) of single walled carbon nanotube (SWCNT) were inserted in the reaction layer. The performance of gas diffusion electrodes for oxygen reduction re...
متن کاملFirst principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction
متن کامل
Electrocatalytic Oxygen Reduction Reaction
Oxygen (O2) is the most abundant element in the Earth’s crust. The oxygen reduction reaction (ORR) is also the most important reaction in life processes such as biological respiration, and in energy converting systems such as fuel cells. ORR in aqueous solutions occurs mainly by two pathways: the direct 4-electron reduction pathway from O2 to H2O, and the 2-electron reduction pathway from O2 to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2018
ISSN: 2079-4991
DOI: 10.3390/nano8030138